👻
security
  • 计算机技术
  • OWASP TOP 10
  • 名词解释
  • 1
    • 杂记
      • GitHub Monitor
      • Notion
    • 常见端口利用
    • F5 big-ip从环境搭建到漏洞复现
    • 红队资源
  • About
    • APT
      • 海莲花(APT-C-00)
        • 样本分析
      • 毒云藤(APT-C-01)
        • 大规模钓鱼攻击活动披露
        • 2020上半年针对我重要机构定向攻击活动揭秘
      • 响尾蛇(T-APT-04)
        • 利用WebSocket隧道的新型攻击活动披露
      • 蔓灵花(APT-C-08)
        • 移动平台攻击活动揭露
      • 蓝宝菇(APT-C-12)
        • 组织使用云存储技术发起的最新攻击活动披露
      • 双尾蝎组织(APT-C-23)
        • 针对中东地区的最新攻击活动
      • Lazarus(APT-C-26)
        • 暴风行动 -利用MATA框架针对数字货币行业的攻击活动揭秘
      • Fancy Bear(APT-C-28)
        • 携小众压缩包诱饵对北约、中亚目标的定向攻击分析
      • 肚脑虫组织(APT-C-35)
        • 使用升级版数字武器针对周边地区的攻击活动
        • 针对巴基斯坦的攻击活动
      • 拍拍熊(APT-C-37)
      • 军刀狮(APT-C-38)
      • 蓝色魔眼(APT-C-41)
        • 组织首次针对我国重要机构定向攻击活动披露
      • 美人鱼(Infy)
        • 使用最新的Foudre后门进行攻击活动的分析
    • 各类靶场讲解
      • sqli-labs
      • upload-labs
      • xss-labs
    • CISP题库
    • Docker
      • Docker基线
        • docker基线-概述
        • 推荐一
        • 推荐二
        • 推荐三
        • 推荐四
        • 推荐五
        • 推荐六
      • 命令与选项
      • 基于Docker的固件模拟
      • 固件相关
      • Docker 私有仓库搭建
      • 基础命令的背后
      • 渗透思路调研
      • Docker容器环境检测方法【代码】
    • 浏览器
    • markdown
    • 密码学
    • 内网渗透TIPS
    • 网络扫描
    • 正则表达式
  • 操作系统
    • Android
      • APK终端安全分析法
      • 应用审计指南
        • 通用审计方法
    • IOS
      • 应用审计指南
    • Linux
      • 反弹shell
      • 基线检查
      • SHELL编程
      • 实战技能
    • windows
      • BACKDOOR with 权限维持
      • 磁盘取证实验
      • 基线检查
      • 免杀抓取明文
      • payload下载方式
      • powershell
      • 日志分析
        • 分析工具
      • Untitled
  • 数据库
    • db2
    • mysql
      • webshell写入
      • 基础知识
      • 核心技术
      • 高级应用
    • oracle
      • webshell写入
    • SQLserver
      • webshell写入
  • 中间件
    • apache
      • 基线检查
      • 日志审计
    • iis
      • 基线检查
      • 7.5解析绕过漏洞
    • nginx
      • 基线检查
    • tomcat
      • 基线检查
  • 编程语言
    • C
    • Java
      • webshell
        • 查杀Java web filter型内存马
        • Filter/Servlet型内存马的扫描抓捕与查杀
        • 基于内存 Webshell 的无文件攻击技术研究
        • 基于tomcat的内存 Webshell 无文件攻击技术
        • Tomcat 内存马检测
      • 代码审计
      • 代码审计指南
      • 浅析Java命令执行
      • 相关框架简介及漏洞
    • PHP
      • 代码审计
      • 破解DVWA-admin密码
      • webshell
        • 常见php一句话webshell解析
        • PHP Webshell Hidden Learning
        • Webshell免杀研究
        • Webshell那些事-攻击篇
        • 过D盾webshell分享
      • 相关框架简介及漏洞
    • python
      • 安全编码规范-代码审计
      • 编码规范
      • fishc
      • 某教程涉及脚本
      • POC编写相关
      • python秘籍
        • 上半部分
        • 下半部分
      • 安全方面的内容
        • Python Opcode逃逸笔记
        • 虚拟机逃逸
      • with-EXCEL
      • 相关框架简介及漏洞
      • 源码剖析
        • 多线程和GIL锁
        • Set容器
        • 统一内存管理
        • 信号处理机制
        • 循环垃圾回收器
        • 字符串对象PyStringObject
        • 整数对象PyIntObject
        • 字节码和虚拟机
    • 汇编
    • Javascript
      • Tampermonkey Script
  • AIGC
    • howtouse
  • 网络
    • CCNA
  • 漏洞类型及讲解
    • 综合
    • 技术分享
      • 暴力破解与信息泄露
      • 信息泄露漏洞_java
      • sqli-with-java
      • python远程命令执行与SSRF
    • SQL-Injectoin
    • Cross-Site Scripting
      • 跨站的艺术-XSS入门与介绍
      • 跨站的艺术-XSS Fuzzing 的技巧
      • 给开发者的终极XSS防护备忘录
      • AngularJS特性的 XSS
    • 文件操作
      • 文件包含
  • how-to-use
    • Acunetix(AWVS)
      • 安装到使用
      • 编写AWVS脚本探测web services
      • 简单分析-web方面
      • 流量分析特征
    • burpsuite
      • 导出报告方式
      • captcha-killer
      • FAKE-IP
      • JSFind
      • 编写插件绕过WAF
    • Cobalt Strike
      • Cobalt Strike Powershell过360+Defender上线
    • FOFA
    • GDB
    • PowerSh
      • 获得Powershell命令的历史记录
      • 深入分析PowerShell的两面性
      • 内网渗透利器之PowerSploit
      • PoC:滥用PowerShell Core
      • 如何绕过PowerShell访问限制并实现PowerShell代码执行
      • 工具包
      • 无powershell运行powershell方法总结
    • sheji
    • sqlmap
      • Atlas修改SQLMap tampers 绕过WAF/IDS/IPS
      • 内核分析
      • 检测剖析
      • tamper
      • UDF
      • --os-shell
      • sqlmapapi
      • with burp
      • 网络特征
    • Matlab
    • Metasploit
      • 与Powershell
    • NESSUS
      • 流量分析特征
      • Untitled
    • Network MapTools
      • 流量特征修改
      • 识别主机指纹
    • waf
      • ngx-lua-waf
      • modsecurity
由 GitBook 提供支持
在本页
  • 1、
  • 2、
  • 3、
  • 4、
  • 5、

这有帮助吗?

  1. how-to-use
  2. Network MapTools

识别主机指纹

上一页流量特征修改下一页waf

最后更新于4年前

这有帮助吗?

1、

Nmap维护一个nmap-os-db数据库,存储了上千种操作系统信息,简单一点来说,Nmap通过TCP/IP协议栈的指纹信息来识别目标主机的操作系统信息,这主要是利用了RFC标准中,没有强制规范了TCP/IP的某些实现,于是不同的系统中TCP/IP的实现方案可能都有其特定的方式,这些细节上的差异,给nmap识别操作系统信息提供了方案,具体一点说,Nmap分别挑选一个close和open的端口,分别发送给一个经过精心设计的TCP/UDP数据包,当然这个数据包也可能是ICMP数据包。然后根据收到返回报文,生成一份系统指纹。通过对比检测生成的指纹和nmap-os-db数据库中的指纹,来查找匹配的系统。最坏的情况下,没有办法匹配的时候,则用概率的形式枚举出所有可能的信息。

所谓的指纹,即由特定的回复包提取出的数据特征

2、

Nmap-os-db在kali中路径如下

v2-ecb242e1ab4f16f38c838eef12067aed_hd.w

我把他下在到win上方便查看

这是指纹库的版本

以这条为例

最前面几行为注释行,说明此指纹对应的操作系统与版本。

Fingerprint关键字定义一个新的指纹,紧随其后的是指纹名字。

Class行用于指定该指纹所属的类别,依次指定该系统的vendor(生产厂家),OS family(系统类别),OS generation(第几代操作系统),and device type(设备类型)。

接下来是CPE行,此行非常重要,使用CPE(CommonPlatformEnumeration,通用平台枚举)格式描述该系统的信息。以标准的CPE格式来描述操作系统类型,便于Nmap与外界信息的交换,比如可以很快从网上开源数据库查找到CPE描述的操作系统具体信息。

此处作为指纹描述字段的CPE格式如下:

cpe:/<part>:<vendor>:<product>:<version>:<update>:<edition>:<language>

接下来从SEQ到IE的13行都是具体指纹数据描述行,在对比指纹时,就是对比这13行里面的具体数据,如果匹配则目标机为指纹所描述的系统类型。

SEQ描述顺序产生方式;OPS描述TCP包中可选字段的值;WIN描述TCP包的初始窗口大小;ECN(ExplicitCongestionNotification)描述TCP明确指定拥塞通知时的特征;T1-T7描述TCP回复包的字段特征;U1描述向关闭的UDP发包产生的回复的特征;IE描述向目标机发送ICMP包产生的特征。

3、

在系统探测过程中,会执行五种不同的测试,每种测试由一个或者多个数据包组成,目标系统对每个数据包作出的响应有助于确定操作系统的类型。

五种不同的测试是:

  1. sequencegeneration

  2. ICMPecho

  3. tcp explicit congestion notification

  4. TCP

  5. UDP

分别看看

序列生成(sequencegeneration):

序列生成测试由六个数据包组成,这六个包是每隔100 毫秒分开发送的,且都是TCP SYN 包。每个TCP SYN 包的结果将有助于NMAP 确定操作系统的类型。

ICMP回显(ICMPecho):

两个有着不同设置的ICMP请求包被送到目标系统,由此产生的反应将有助于实现验证操作系统类型。

TCP显式拥塞通知(explicitcongestion notification):

当生成许多包通过路由器时会导致其负载变大,这称之为拥塞。其结果就是系统会变慢以降低拥堵,以便路由器不会发生丢包。这个包仅为了得到目标系统的响应而发送。因为不同的操作系统以不同的方式处理这个包,所以返回的特定值可以用来判断操作系统。

TCP:在这个测试中会发送六个数据包。一些带有特定的包设置的包被发送用来到打开的或关闭的端口。结果也将会因为操作系统的不同而不同。

所有TCP 包都是以如下不同的标志被发送:

无标志

SYN、FIN、URG和PSH

ACK

SYN

ACK

FIN、PSH和URG

UDP:这个测试由一个被发送给一个关闭的端口的数据包组成。如果目标系统上的这个端口是关闭的,而且返回一条ICMP 端口不可达的信息,那么就说明没有防火墙。

4、

以kali为例,如果关闭全部端口,则会显示

开放一个80端口,此时就可以检测出这是linux系统

5、

接下来通过抓包分析

144为被扫描的机器,138为运行nmap的机器

我在前面提到,在kali上开发的唯一端口是80,所以在wireshark可以看到这一系列包是在发往80端口的

  1. Sequence generation (SEQ, OPS, WIN, and T1)

会发送一系列共6个tcp探测来生成4个响应行,每一个都是tcpsyn数据包,连接到远程机器上检测到的开放的端口。

这些数据包的序列(sequence)和确认号(acknowledgementnumbers)是随机的,tcp选项和tcp窗口字段值也是不同的。

具体而言如下所示:

Packet #1: window scale (10), NOP, MSS (1460),timestamp (TSval: 0xFFFFFFFF; TSecr: 0), SACK permitted. The windowfield is 1.

如2006所示

Packet #2: MSS (1400), window scale (0), SACKpermitted, timestamp (TSval: 0xFFFFFFFF; TSecr: 0), EOL. The windowfield is 63.

如2009所示

Packet #3: Timestamp (TSval: 0xFFFFFFFF; TSecr:0), NOP, NOP, window scale (5), NOP, MSS (640). The window field is4.

如2012所示

Packet #4: SACK permitted, Timestamp (TSval:0xFFFFFFFF; TSecr: 0), window scale (10), EOL. The window field is 4.

如2015所示

Packet #5: MSS (536), SACK permitted, Timestamp(TSval: 0xFFFFFFFF; TSecr: 0), window scale (10), EOL. The windowfield is 16.

如2018所示

Packet #6: MSS (265), SACK permitted, Timestamp(TSval: 0xFFFFFFFF; TSecr: 0). The window field is 512.

如2021所示

上图中2006-2007是一对syn,及对应返回的synack;

2006-2007,2009-2010,2012-2013,2015-2016,2018-2019,2021-2022一共6对

这些测试的结果包括四个结果类别行。

第一个SEQ包含基于探测包的序列分析的结果。这些测试结果是GCD,SP,ISR,TI,II,TS和SS。

SEQ测试将六个TCPSYN数据包发送到目标机器的开放端口,并收回SYN/ ACK数据包。这些SYN /ACK分组中的每一个包含32位初始序列号(ISN)。GCD,SP,ISR的计算比较麻烦。GCD根据ISN计算。ISR,SP都根据GCD计算。

下面的截图是6个tcpsyn包中的ISN

TI会检查响应的IP头ID字段,必须至少收到三个响应才能包含测试,如果ID字段值都是0的话,则为Z在2007,2010,2013,2016,2019,2022数据包中的IP头部ID字段均为0

所以在TI的值为Z

TS是根据SEQ探测的响应中的TCP时间戳选项,它检查TSval(选项的前四个字节)

如果时间戳选项值不为0,还需计算,比较麻烦,根据计算结果再赋TS值为1或7或8

从数据包中,以2007为例,可以知道TS值为1或7或8

下一行OPS包含为每个探测器接收的TCPoption(测试名称为O1到O6)。

按照顺序来,即2007为O1,2010位O2...

以2007为例来分析

它对应的字符串是M5B4ST11NW7:

M代表Maximumsegment size,1460的16进制为5B4;

S代表SackPermitted

T代表Timestamp,如果TSval,TSecr都不是0,则为11

N代表NOP

W代表Windowscale,大小为7

O2-O6以此类推

WIN行包含response的windowsize(名为W1到W6)。

以2013为例

Windowsize为28960

与这些探测器相关的最后一行T1包含packet#1的各种测试值。这些结果用于R,DF,T,TG,W,S,A,F,O,RD和Q测试。这些测试仅针对第一个探针报告,因为它们对于每个探针几乎总是相同的

R表示目标是否有响应,有响应则为Y

DF表示禁止路由器分段数据包的位是否置位,若置位则为Y,从下图可以看出已置位

T表示初始TTL,下图可以看到T应为39

TG为猜测的初始TTL值,如果发现实际TTL值,则不会打印该字段

S检查TCP报头中的32位序列号字段,与引发响应的探测中的TCP确认号进行比较。然后它记录适当的值。下图可以看到sequencenumber为0,所以S的值为Z

A测试响应中的确认号acknowledgementnumber与相应探测中的序列号的比较

下图中可以看到2017的acknowledgementnumber为1,2016中的sequencenumber 为0,0+1=1,即2017的acknowledgementnumber等于2016的sequencenumber+1

所以A的值为S+

F记录响应中的tcpflag

下图以2017为例,flags中A和S置位,所以F的值为AS

RD是针对reset包的数据做校验和的结果,如果没数据或没校验或校验和无效,则为0

下图可以看出是没校验,RD值为0

Q主要针对两处:一处是tcpheader的保留字段非0,如果出现则Q中记录“R”

另一处是没设置URGflag时,存在非零的URG指针字段

上图可以看出都不存在,所以Q为空

v2-852c520bc8e56e7f1682124b195e838b_hd.w
image.png
v2-770916837d72a466e053616d7ceba096_hd.w
v2-79ea2ab98876bc7fbf8ec12945995f10_hd.w
v2-a9b9d9bd37f3d11fd08c94e5b4c9a197_hd.w
image.png
v2-f7941270f56001390282b912b56a397c_hd.w
v2-8f8a6173983af30c4d59d967145593c6_hd.w
v2-b90c9b544a925ffb5d49693f1e4aa957_hd.w
v2-a786a9d734bdc823e7bb3b2e6a55ab84_hd.w
image.png
v2-11f73582b8d7e78efb15edcd63daa5c7_hd.w
v2-877a1007da6b8d88d8ca57d75985d650_hd.w
v2-bf88aec1d6f9bb158a91239100a88bd8_hd.w
v2-136a6f3027120bc58991e3335381c0af_hd.w
v2-c2425a73decb0ff7d5078cb3ebf8175b_hd.w
v2-3b740081c92e98c5bfac0ec302a66bf7_hd.w
v2-3c90ecb64cd85c1d83c6d6c40697211d_hd.w
v2-24988a42430bfc941b9c8f523d39400d_hd.w
v2-cc04829249b59e377fd360122d5ba19c_hd.w
v2-5895daf4a4449f7eb950ab00e2752fd2_hd.w
v2-a488b275324d60f19ace6561c4d33020_hd.w
image.png
image.png
image.png
v2-a435ef037f1478fa1aa2de4f1e690746_hd.w
v2-f5883d542c6b04699219a3d563d5a403_hd.w
v2-6982f1234c38a2c50660c7e19ef565b0_hd.w